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Dense Registration and Mosaicking of Fingerprints
by Training an End-to-End Network
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Abstract— Dense registration of fingerprints is a challenging
task due to elastic skin distortion, low image quality, and
self-similarity of ridge pattern. To overcome the limitation of
handcraft features, we propose to train an end-to-end network
to directly output pixel-wise displacement field between two
fingerprints. The proposed network includes a siamese network
for feature embedding, and a following encoder-decoder network
for regressing displacement field. By applying displacement fields
reliably estimated by tracing high quality fingerprint videos to
challenging fingerprints, we synthesize a large number of training
fingerprint pairs with ground truth displacement fields. In addi-
tion, based on the proposed registration algorithm, we propose a
fingerprint mosaicking method based on optimal seam selection.
Registration and matching experiments on FVC2004 databases,
Tsinghua Distorted Fingerprint (TDF) database, and NIST SD27
latent fingerprint database show that our registration method
outperforms previous dense registration methods in accuracy.
Mosaicking experiments on FVC2004 DB1_A and a small
fingerprint database demonstrate that the proposed algorithm
produced higher quality fingerprints and led to higher matching
accuracy, which also validates the performance of our registration
algorithm.

Index Terms— Fingerprint, registration, deep learning,
mosaicking.

I. INTRODUCTION

ALTHOUGH automatic fingerprint recognition system has
been widely deployed in various applications, current

fingerprint matching algorithms still need improvement, espe-
cially for those fingerprints with large skin distortion [1].
As an inherent problem in contact-based fingerprint acqui-
sition, skin distortion increases intra-class variations among
different images of a same finger, and thus causes declines in
fingerprint matching accuracy [2].

Fingerprint registration algorithms can be employed to
reduce negative impact of skin distortion. Conventional
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fingerprint registration algorithms [3]–[5] typically first find
minutiae correspondences between two fingerprints (referred
to as input fingerprint and reference fingerprint), and then fit a
spatial transformation model to these corresponding minutiae.
However, for highly distorted fingerprints, minutiae-based
registration methods can only obtain a very sparse set of
displacement measures at locations of corresponding minutiae,
which cannot align all ridges in two fingerprints.

In contrast to minutiae-based methods, dense fingerprint
registration [6] aims to obtain pixel-wise displacement mea-
sures between two fingerprints with nonlinear skin distortion,
instead of producing only sparse displacement measures. The
core of dense registration is a local matching problem: for
a pixel in the reference fingerprint, find the corresponding
pixel in the input fingerprint. Because of self-similarity of
ridge pattern, noise, and distortion, local matching is chal-
lenged by large intra-class variations among mated regions
and small inter-class variations among non-mated regions,
as well as large search space. As shown in Fig. 1, noise
leads to changes in ridge patterns, and increases intra-class dif-
ference; self-similarity makes fingerprint have low inter-class
variation, thus difficult to find the true mate among
many highly similar non-mated regions; distortion changes
ridge patterns, raises intra-class difference, and enlarges
search space.

Regarding these challenges, current dense registration meth-
ods [6], [7] still need improvements from aspects of local dis-
placement estimation and global deformation constraints. The
phase demodulation method [7] is weak in local displacement
estimation, as it can only obtain displacement perpendicular to
ridge orientation, less than one ridge period, and it is sensitive
to noise. The image correlation method [6] is slightly better
than phase demodulation method for local displacement esti-
mation. However, due to three aforementioned challenges in
dense fingerprint registration, they cannot accurately measure
the displacements. Therefore, they all rely heavily on global
deformation constraints. The global deformation constraint
for phase demodulation is dependent on the order of phase
unwrapping, which has the problem of error accumulation
[8]. The image correlation method uses Markov Random
Field (MRF) to implement global deformation constraints, but
it cannot solve the problem of large local measurement errors.
These drawbacks of existing dense registration methods imply
for needs for a more powerful method to overcome those
challenges.

In recent years, convolutional neural networks prove to
provide a better solution to deal with complicated fingerprint
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Fig. 1. Dense registration faces three challenges: high self-similarity of ridge pattern, low image quality, and large distortion. The figure shows three examples
where true matching scores are lower than false matching scores according to image correlation coefficient. (a) Because of the self-similarity of fingerprints,
the correlation score between true mates may be lower than false mates. (b) Ridge curves differ in low quality regions, which troubles local matching by
increasing intra-class variations. (c) Distortion increases intra-class variations and enlarges search space for possible matches.

Fig. 2. The whole fingerprint registration algorithm consists of two steps: minutiae-based coarse registration and CNN-based fine registration. Note that the
proposed dense registration network estimates a pixel-wise displacement field, but for clarity, a block-wise displacement field is shown here.

recognition problems than handcrafted methods, and has been
applied to orientation field estimation [9], [10], minutiae
extraction [11], rectification of distorted fingerprints [12],
fingerprint matching [13], and fingerprint unwarping [14].

To our knowledge, however, there is no deep learning
based method for dense registration of two fingerprints.
In this article, we make an attempt to develop an end-to-
end convolutional neural network (CNN) for dense registration
of fingerprints, in order to deal with the challenges above.
Fig. 2 shows the framework of the whole registration algo-
rithm, which consists of minutiae-based coarse registration
and CNN-based fine registration. The input fingerprints are
first aligned by fitting a spatial transformation model based
on matching minutiae pairs, then go through the proposed
dense registration network to get a dense displacement field.
The proposed network consists of two parts. The first part is
a parallel feature network extracting features from two input
fingerprints. The second part is a standard encoder-decoder
network [15] to generate displacement field.

We apply our fingerprint registration algorithm to finger-
print mosaicking, that is, stitching multiple images from one
finger into a larger fingerprint image [16]. The performance
of fingerprint mosaicking relies closely on the accuracy of
fingerprint registration. If fingerprint registration fails to align
ridge patterns of two fingerprints, fingerprint mosaicking will

generate false minutiae and missing minutiae in overlapping
region. Based on the results of the proposed registration
algorithm, we proposed an algorithm for selecting the optimal
stitching seam to further improve the quality of mosaicking
region.

We evaluate our method by comparing with previous dense
registration methods on registration accuracy and match-
ing performances. We run experiments on FVC2004 [17],
Tsinghua Distorted Fingerprint (TDF) database [6] and NIST
SD27 latent fingerprint database. Experimental results show
that our method outperforms previous dense registration meth-
ods in accuracy and is faster. The mosaicking method is
evaluated according to consistency in minutiae before and after
mosaicking, as well as matching experiments on a small finger-
print database with and without mosaicking. Experiments on
mosaicked fingerprints further demonstrates the performance
of our dense registration algorithm.

A previous work of this article has been published as a
conference paper [18]. As a following work of [18], we have
made four main improvements:

• Network structure. The network in [18] is a local
matching network that outputs a single displacement
vector from two input fingerprint patches. We upgrade the
network to an encoder-decoder structure with smoothing
loss that directly outputs a dense displacement field.
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The new network captures global information and penal-
izes complex displacement field, which is an important
advantage over [18] to distinguish genuine matching from
impostor matching.

• Generation of training data. The training data in [18]
are selected from FVC2002, which lack distortion and
image quality challenges. Also, the training data in [18]
consist of two fingerprint local patches and a correspond-
ing displacement vector, which are of small diversity and
lack information of larger scale. In this study, the training
data are more plentiful and challenging. The displacement
fields are extracted from Tsinghua Distorted Fingerprint
Video Database [19] to cover various types of fingerprint
distortion. The displacement fields are applied on latent
and wet fingerprints to generate data of bad image quality
and small area.

• Mosaicking algorithm. We also develop a fingerprint
mosaicking method, which is useful by itself and can
reflect the performance of dense registration, and it is
not covered in [18].

• Experiment. More experiments are conducted to
detailedly examine how and why deep learning method
exceeds previous dense registration methods, such as reg-
istration result on different kinds of fingerprints, matching
performance on latent fingerprints, and mosaicking accu-
racy for the purpose of examining registration accuracy.

The rest parts of this article are organized as follows.
Section II reviews related work. Section III proposes our
method using end-to-end network. Section IV mainly intro-
duces our fingerprint mosaicking method after dense regis-
tration. Section V presents the experimental results of the
proposed method versus previous dense registration methods.
Finally, Section VI summarizes our work.

II. RELATED WORK

A. Elastic Registration of Fingerprints

Early fingerprint registration methods use rigid model to
transform fingerprints [4], which cannot align minutiae accu-
rately, not to speak of aligning ridges. Thin-plate spline (TPS)
model is introduced by several researchers to deal with elastic
fingerprint distortion [3], [5] to solve this problem.

TPS based algorithms mainly use minutiae correspondences
to fit transformation models, thus the accuracy of these meth-
ods relies on the accuracy of minutiae matching. Although
lots of work focus on improving minutiae matching accuracy
[4], [20]–[22], the performance of minutiae matching is still
limited by distortion and bad image quality. Additionally,
minutiae-based matching only provides minutiae pairs, and
the fitted TPS model cannot align fingerprint area lacking
matching minutiae.

Several methods [23]–[26] further incorporate ridge skele-
ton features correspondences to register fingerprints. However,
these methods are sensitive to ridge skeleton errors, which
is very common in bad quality fingerprints. They also lack
reasonable constraint for deformation and strong descriptors
for establishing accurate correspondences between ridge points
which are featureless.

B. Dense Registration of Fingerprints

Dense registration of fingerprints aims to provide pixel level
correspondences between two fingerprints, rather than very
sparse minutiae correspondences.

Dense registration of fingerprints is first introduced by [6].
Their method uses image correlation on blocks as similarity
measurement, then minimizes the global similarity score to
find dense correspondences between two fingerprints. Their
method performs better than minutiae-based method, but the
computation of image correlation is sensitive to those chal-
lenges mentioned in Fig. 1 and is computationally expensive.

Phase demodulation method proposed in [7] transfers the
concept of phase demodulation in communication into finger-
print registration. They make use of the fingerprint charac-
teristic that fingerprint patterns look like a 2-D cosine wave,
therefore, computing phase shift is equal to computing dis-
placement. But the phase feature they utilized in this method
is still a handcraft feature extracted from fingerprint ridge
images, and the accuracy of phase feature is bothered in low
quality and large distortion area.

III. FINGERPRINT REGISTRATION

Our dense registration algorithm mainly consists of three
steps: (1) initial registration (or minutiae based fingerprint
registration) which finds out the mated minutiae pairs from
two fingerprints and roughly aligns them by minutiae corre-
spondences; (2) fine registration using an end-to-end network
which outputs a dense displacement field from roughly aligned
fingerprints; (3) dense registration of the input fingerprint to
the reference fingerprint according to the result of step (2).

A. Initial Registration

This step performs a coarse registration based on matching
minutiae pairs, which is also used in previous dense registra-
tion methods [6], [7]. In this step, we first use VeriFinger SDK
[27] to extract minutiae, and compute similarity scores among
all minutiae pairs using MCC minutia descriptor [20]. Then,
we use spectral clustering method [28] to find those most
probable matching minutiae pairs. Finally, those matching
minutiae are used as landmark points to compute a thin plate
spline (TPS) model [29], which is then used to align the input
fingerprint to the reference fingerprint.

B. Network for Displacement Field Estimation

As shown by Fig. 3, the proposed network first uses two
parallel branches to extract features from two input finger-
prints. Then the two features are concatenated and sent into
an encoder-decoder to regress the displacement field D =
(Dx ,Dy) at each pixel. The network is fully convolutional,
therefore can be trained and evaluated in an end-to-end man-
ner, and can deal with fingerprint images of arbitrary size.

The training loss consists of two parts: the regression loss
between estimated displacement field Dest and ground-truth
displacement field D, and the smoothing loss of estimated
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Fig. 3. Architecture of the proposed network, including a siamese network for feature embedding and an encoder-decoder for estimating displacement field.
Siamese branches consist of 4 convolution layers. Encoder-decoder includes 4 down blocks, a middle convolution block, and 4 up blocks, and each block has
two convolution layers. Layers in different colors imply for different kernel sizes, and layers in different sizes correspond to maxpooling or upsampling.

Dest .

L = Lest + λLsmo (1)

Lest =
∑

‖Dest − D‖2
2 (2)

Lsmo =
∑

x

‖∇(Dest )‖2
2 (3)

where x denotes a pixel and λ is empirically set to 0.8. ∇ is
a standard Laplacian filter to compute spatial gradient. Since
Dest is two-dimensional, the two components of gradients are
computed separately and then the sum of square is the final
loss.

‖∇(Dest )‖2
2 = ∣∣∇(Dx

est )
∣∣2 + ∣∣∇(Dy

est )
∣∣2

(4)

C. Training Data

1) Displacement Fields Generation: For deep learning stud-
ies, training data is as important as network structure. To train
an end-to-end network in Fig. 3, we need sufficient pairs
of mated fingerprints and corresponding dense displacement
filed. However, acquiring a large size of ground truth data
of displacement fields from challenging mated fingerprints
manually is a gigantic task, and is unrealistic.

Therefore, we use Tsinghua Distorted Fingerprint Video
Database [19] to generate displacement fields. We select this
database for two reasons: 1) A large proportion of fingerprints
in this database are of severe distortion, which is beneficial for
training a network suitable for large distortion. 2) Although
large distortion may cause trouble in fingerprint matching,
fingerprint images in adjacent frames are of little translation.
By tracing the motion of minutiae between neighboring frame
one after another, we can construct reliable minutiae corre-
spondences across all frames even if they are highly distorted.

The first and the last frames from one video are used to
generate a displacement field, and the displacement field is
computed by TPS transform using matching minutiae pairs
through minutiae tracking. Therefore, each displacement field
is of large distortion and high confidence. We get 320 dis-
placement fields in total from distorted fingerprint videos.

2) Training Data Building: For the displacement fields
obtained from Tsinghua Distorted Fingerprint Video Data-
base, we do not directly use these data to train a network
because 320 pairs of fingerprints of good image quality are
clearly not enough from aspects of fingerprint image quality
and fingerprint patterns. We build training data from three
datasets listed in Table I, i.e. rolled fingerprints, latent finger-
prints, and wet fingerprints altogether with obtained displace-
ment fields. Latent fingerprints are provided by local police
department, and they are used in order to make our method
insensitive to various latent fingerprint qualities. Wet finger-
prints were also used to improve our method on wet fingerprint
circumstance which is not included in latent fingerprints.

For a fingerprint image Ii in dataset, we use displacement
field D j to transform and interpolate a transformed fingerprint
image Ii j = D j (Ii ). A pair of images Ii and D j (Ii ) are first
binarized by VeriFinger [27] to get enhanced images, then
we crop areas of size 256×256 from enhanced images and
displacement field. Thereby a set of training data {I1, I2,D}
is generated.

For latent fingerprints, they are additionally enhanced by
FingerNet [11] for better results. We have 10,459 latent
fingerprint images and 320 displacement fields, and each
latent fingerprint image is combined with 2 random selected
displacement fields. Therefore, a total number of 20,918 pairs
of training dataset are generated. We do not combine each
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Fig. 4. Examples of three data argumentation methods, including flipping, rotating, and swapping. The first row is training image pairs displayed by
overlapping two fingerprint images. Binarized input fingerprints are overlaid on the binarized reference fingerprint (gray line) for visualization. Green pixels
indicate regions where input fingerprint ridges align with reference fingerprint ridges, and red pixels indicate non-overlapping regions between input and
reference fingerprint ridges. The second row is displacement fields displayed as vector fields.

TABLE I

FINGERPRINT DATABASES USED AS TRAINING DATA

fingerprint image with each displacement field to reduce the
redundancy of training data. For wet fingerprints, because we
only have 30 wet fingerprints from FVC2004 DB1/2/3_B, each
wet fingerprint is combined with all 320 displacement fields.

3) Data Augmentation: We conduct data augmentation by
mirror flipping images, rotating, and swapping the position of
I1 and I2, as shown in Fig. 4. When changing fingerprint image
patches, their displacements are changed at the same time. The
displacement field D here has size 256×256×2 which is the
same as input images. Therefore, flipping and rotating are also
operated on D. For clearer explanation, we split D into Dx

and Dy in following explanation.
The three augmentation types are:

1) Mirror flipping: Augmented {I1, I2,Dx ,Dy} at coordi-
nate (i, j) = Original {I1, I2,−Dx ,Dy} at coordinate
(−i, j), where axis origin is located at the center of
image.

2) Rotate: Augmented {I1, I2,Dx ,Dy} at coordinate (i, j)
= Original {I1, I2,Dx cos θ + Dy sin θ,−Dx sin θ +
Dy cos θ} at coordinate (i cos θ + j sin θ,−i sin θ +
j cos θ), θ ∈ [90◦, 180◦, 270◦], where axis origin is
located at the center of image.

3) Swap: Augmented {I1, I2,Dx ,Dy} at coordinate (i, j) =
Original {I2, I1,−Dx ,−Dy} at coordinate (i, j), where
axis origin is located at the center of image.

The three augmentation types can be integrated to enlarge
the size of training data. After augmentation, the training set
is 16 times bigger, which meets the need of training our
network.

D. Dense Registration

The final registration result is a direct nearest neighbor
interpolation using the output displacement D to generate an
aligned input fingerprint. Previous dense registration methods
[6], [7], [18] use TPS transform to conduct the final step of
dense registration because these methods output displacement
fields on grid level, size of 20 × 20 pixels for instance.
Therefore, fitting a TPS transform is needed to calculate
displacements on the rest of pixels.

Our method outputs displacement field directly on pixel
level, and the output displacement field is already smoothed
because of smoothing loss in training network. So nearest
neighbor interpolation can be used in the final step. Comparing
with TPS interpolation, nearest neighbor interpolation is much
faster.

IV. FINGERPRINT MOSAICKING

An important application of fingerprint registration is fin-
gerprint mosaicking, which combines a series of smaller
fingerprints to reconstruct a larger fingerprint. Comparing
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Fig. 5. The flowchart of the proposed fingerprint mosaicking algorithm.

with conventional fingerprint mosaicking method that com-
bines a sequence of fingerprints [30], the proposed fingerprint
mosaicking method aims at stitching multiple fingerprints
from different acquisition sessions, which is more general and
complicated. To combine multiple smaller fingerprints into one
larger fingerprint, these smaller fingerprints need to be pre-
aligned, and the performances of registration will consequently
affect the performances of mosaicking.

In this section, a fingerprint mosaicking method is intro-
duced after applying our registration algorithm. A pair of
fingerprints may still have some differences after registration,
and a straightforward method based on weighted fusion of
fingerprints will lead to mess in badly aligned region [31].
To overcome this problem, we develop an optimal seam
selection method to combine two fingerprints and reduce influ-
ence from badly registered area. The mosaicking algorithm
is detailedly introduced in next subsections. IV-A introduces
the proposed mosaicking method, and IV-B talks about the
utilization of the proposed mosaicking method on fusing
multiple fingerprint images.

A. Mosaicking of Two Fingerprints

As Fig. 5 illustrates, our fingerprint mosaicking method
consists of three steps: 1) find endpoints of the seam to
be determined, 2) build an undirected graph based on the
differences between two fingerprints, and 3) find the optimal
seam and conduct mosaicking.

Step 1 is quite straightforward: the intersection points of
the edges of the two fingerprints are considered as endpoint
candidates, as shown in Fig. 5(b). Morphological processing
is used to fill holes to get smoothed borders. If the edges of
two fingerprints have more than two intersection points, the
two farthest intersection points are used as endpoints. If no
intersection point is found, which means one fingerprint is
inside another fingerprint after pairwise registration, then the
larger fingerprint is considered as the mosaicking result, and
the smaller fingerprint is left out.

Step 2 builds an undirected graph using each pixel in the
overlapping region as a node, and its 4-connection neighbors
as edges. The edges are weighted by the penalties computed
from the differences between two fingerprints, as shown
in 5(c) where higher intensities implies higher difference

values. The differences of two fingerprints, also viewed as the
penalty of separation seam, contains three parts: the gray-scale
image difference |I1(p) − I2(p)|, the orientation difference
|O1(p) − O2(p)| between reference fingerprint and registered
input fingerprint, and the penalty by the distance to the edges.

The first two penalties quantify how much the two fin-
gerprints differ, and the third penalty simply prevents the
separation seam from being too close to one side, but instead
being in the middle and making use of both fingerprints. This
border penalty drives separation line away from fingerprint
border, which decreases bad influences by border effect during
processing fingerprint images. Clearly, the separation seam
must be within the overlapping region of two fingerprints, thus
we only compute penalties in the overlapping region.

P (p) = |I1(p) − I2(p)| + λ1 |O1(p) − O2(p)|
+λ2 exp (−distance (p, edges)) (5)

Step 3 determines the optimal seam after settling endpoints
of the possible seam and constructing the graph. To combine
reference fingerprint and aligned input fingerprint into a larger
fingerprint image, we need to find an optimal separation line.
The optimal separation line, or optimal seam, is defined as
minimizing the differences between two sides across this seam.
Then aligned input and reference fingerprints are cut according
to the selected seam, and they are piecing together to get the
mosaicked result.

Equation 5 defines a pixel-wise penalty function, and the
total penalty of a candidate seam is the sum of penalties of the
pixels going through by this seam. Therefore, finding optimal
separation line can be viewed as finding an optimal path with
minimum total penalty, which is a standard shortest path issue
and can be solved by Dijkstra algorithm.

B. Mosaicking of Multiple Fingerprints

The above mosaicking algorithm can be extended to com-
bine a series of smaller fingerprints into a larger fingerprint.
These fingerprints may be gathered by rolling finger on a
fingerprint sensor, or just by pressing finger in different angles
on the sensor. By pressing finger with various angles, we can
get fingerprints from different parts on finger, as shown in
Fig. 6. We collect 12 images to cover nearly all areas on finger

Authorized licensed use limited to: Tsinghua University. Downloaded on September 16,2020 at 14:36:25 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: DENSE REGISTRATION AND MOSAICKING OF FINGERPRINTS BY TRAINING AN END-TO-END NETWORK 633

Fig. 6. Growing process of multiple fingerprint mosaicking. The last two images are a comparison between the mosaicked full fingerprint and a traditional
rolled fingerprint, where the blue outline on the mosaicked fingerprint refers to corresponding rolled fingerprint area. Comparing with the mosaicked fingerprint,
a single rolled fingerprint cannot get a full fingerprint due to the special shape of finger, and hence contains much fewer minutiae.

in order to reconstruct a full fingerprint as large as possible.
Because of the special shape of finger, traditional rolled fin-
gerprint cannot cover all fingerprint area, especially fingertip
area. Meanwhile, gathered multiple smaller fingerprints can
fully cover whole fingerprint region. In addition, acquisition
of rolled fingerprint requires larger sensors, which are more
expensive and much less popular than small area fingerprint
sensors.

Before combining fingerprints, we need to know the rela-
tions between those fingerprints to determine the order of
mosaicking, i.e. which fingerprint should be stitched first.
An optimal mosaicking sequence should maximize fingerprint
similarities between adjacent fingerprints to reduce probable
registration and mosaicking errors. Therefore, we run pair-
wise fingerprint matching by VeriFinger to compute similarity
scores between all fingerprints. The first fingerprint is chosen
as the one with the largest total similarity scores with all other
fingerprints. The remaining fingerprints are mosaicked onto the
first one sequentially in a descending order of their matching
scores to it.

Because of the special shape of finger, just rolling fin-
ger once cannot cover the whole fingerprint area, especially
for fingerprint tip region. Mosaicking multiple fingerprints
from different acquisition sessions is needed to obtain a
full fingerprint. Fig. 6 also shows each step of mosaicking
multiple fingerprints. A new fingerprint is first registered
to the mosaicked result of last step, then they are stitched
together to make a larger fingerprint. The last two fingerprint
images in Fig. 6(e)(f) show mosaicked full fingerprint and
a conventional rolled fingerprint for comparison. Comparing
with rolled fingerprint, the mosaicked fingerprint has larger
area and more minutiae (169 vs. 114), which is beneficial for
fingerprint recognition.

V. EXPERIMENT

A. Network and Implementation Details

1) Network Details: As shown in Fig. 3, the network con-
sists of two parts: siamese branches for feature embedding and

Fig. 7. Cumulative distribution curves of registration errors on TDF database
using image correlation (green), phase demodulation (blue), DRN (purple),
and the proposed method (red).

encoder-decoder for displacement estimation. Each siamese
network has four convolution layers with ReLU activation and
7×7 kernel size. The encoder-decoder is a U-Net [15] structure
with four down-convolution blocks, one normal convolution
block, four up-convolution blocks, and a single output convo-
lution layer in order. Each convolution block has two convolu-
tion layers. Down-convolution block contains a max-pooling at
the end, while up-convolution block has an upsampling layer
at the beginning. There are four skip connections from each
down-convolution block to the corresponding up-convolution
blocks. Detailed parameters of convolution blocks and layers
are listed in Table II.

2) Implementation Details: The network for displace-
ment field estimation in the proposed method was trained
on 2 Nvidia 1080Ti GPUs using Adam [32] optimizer with
default parameters and mean square error with smoothness
loss described in Section III-B. The network was first trained
on rolled fingerprint and latent fingerprint database in Table I,
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TABLE II

DETAILS OF CONVOLUTION BLOCKS AND LAYERS

and then fine-tuned on wet fingerprint training data. 20,000
pairs from 20,918 pairs of rolled fingerprints, 20,000 pairs
from 20,918 pairs of latent fingerprints, and 9,000 pairs from
9,600 pairs of wet fingerprints were used in training, and the
rest pairs were used for validation. Training process including
fine-tuning took about 20 hours with batch size 32 on 2 Nvidia
1080Ti GPUs.

For testing, as the network is end-to-end for arbitrary
input size, we can directly get a dense displacement field
from two input fingerprints. Then the input fingerprint is
transformed using nearest neighbor interpolation according to
the output displacement field. Finally, matching scores are
computed between transformed input fingerprint and reference
fingerprint.

3) Datasets Used in Experiments: We evaluate the proposed
algorithm and other dense registration methods [6], [7], [18]
on multiple databases from aspects of registration accuracy,
matching accuracy, mosaicking accuracy, and computation
efficiency. Table III provides a description of these databases.
These databases were captured using different acquisition
techniques (optical, capacitive, inking, and latent fingerprint
development) and contain flat, rolled, and latent fingerprints.
Various challenges such as distortion, low quality, and small
area, are present in these databases.

B. Registration Accuracy

We evaluate registration accuracy from two aspects: devi-
ation of labeled corresponding points, and image correlation
score. The former is a comparison between registration result
with ground truth, while the latter can be tested on large
dataset without labeled corresponding points. Finally, we show
some good and poor registration examples.

1) Evaluation by Deviation: As a quantitative evaluation
of registration accuracy, the registration errors are measured
by calculating the deviation between labeled point correspon-
dences. For example, for a pair of marked points p1 in
image 1 and p2 in image 2, the algorithm translates p2 in
image 2 to a new position p̃ after registration with image
1. Ideally, p̃ should be equal to p1. But in fact, there exists
deviation between p̃ and p1, and ‖ p̃ − p1‖2 is the registration
error.

By calculating and analyzing the registration errors, we can
get the cumulative distribution function (CDF) curves of

registration errors in pixels on TDF database. Although TDF is
involved in generating training data, it’s used only for acquir-
ing displacement fields, and the fingerprint images in TDF are
not included during training. Additionally, the displacement
field are automatically generated from distorted fingerprint
video instead of manual labeling. Therefore, this evaluation
is fair for different dense registration algorithms.

We use a subset of 120 pairs of fingerprints from TDF
with manually marked corresponding points, which are also
used for evaluating registration accuracy in previous dense
registration methods [6], [7], [18]. As Fig. 7 shows, the CDF
curve of our method reaches 1 faster than previous methods.
The cut-off error at rate 1 of our method is 13.5 pixels, which
is smaller than image correlation (30.7), phase demodulation
(22.7), and DRN(18.9). The mean registration errors of three
dense registration methods are 5.65, 5.36, 4.34, 3.75 pixels
respectively, and our method reaches the minimum registration
error.

2) Evaluation by Image Correlator: Successful registration
reduces the geometric difference between different images
from same fingerprint. In order to evaluate the registration
accuracy on a larger scale, we conduct registration on the
2,800 pairs of genuine matching fingerprints from FVC2004
DB1_A, and use the correlation coefficient to judge the
registration accuracy. During the collection of three datasets of
FVC2004, the impressions were required to vary in pressing
pressure, skin distortion, and fingerprint quality [2]. Therefore,
we can further study the registration performances on different
categories of fingerprints. Three types of fingerprints are
selected by authors manually, including 1) 61 fingerprints
with large distortion, 2) 109 dry fingerprints, and 3) 140 wet
fingerprints. The division of the subsets is publicly available.1

If a pair of genuine matching fingerprints involves one subset,
its matching score is included in this subset. Some fingerprint
pairs may involve two subsets, and their matching scores are
counted into both subsets.

Fig. 8 shows the CDF curves of genuine matching scores
using image correlator on different subsets on FVC2004
DB1_A. The CDF curve of genuine matching score is also
termed as False Non-Match Rate (FNMR) curve. At a fixed
correlation score, a lower CDF value (cumulative probabil-
ity) by image correlator indicates better registration result
as well as lower FNMR. Comparing with DRN [18], the
cumulative probability (or FNMR) at correlation score 0.5
by the proposed method is much lower: declined by 32.8%
on distorted fingerprints (subset 1), 55.6% on dry fingerprints
(subset 2), 23.9% on wet fingerprints (subset 3), and 37.0%
on all fingerprints (whole set). Compared to image correlation
method [6] and phase demodulation method [7], the proposed
method produces even larger reduction in FNMR.

Fig. 8 shows that our method obviously outperforms pre-
vious dense registration methods within a wide range of
correlation score ([0.3, 0.8]). The CDF curves of three dense
registration methods only overlap at very low and very high
correlation scores. But these two intervals are not important to
compare the performances of three dense registration methods

1https://github.com/cuiz101417/Dense-Registration
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Fig. 8. Cumulative distribution curves by image correlation scores on four
subsets of genuine matching pairs on FVC2004 DB1_A. Matching score is
computed as image correlation score between fingerprints aligned by each
of the four different dense registration algorithms, using image correlation
(green), phase demodulation (blue), DRN (purple), and the proposed method
(red). The four subsets are distorted fingerprints, dried fingerprints, moistened
fingerprints, and all fingerprints, respectively. The subfigure in the upper left
area detailedly displays the cumulative probabilities on four subsets by dense
registration algorithms at correlation score 0.5.

Fig. 9. Registration examples of different dense registration methods for
genuine matching fingerprints. The numbers in the brackets are matching
scores by VeriFinger and image correlator.

because: 1) A very low correlation score does not make
sense because of the existence of very few failures on initial
registration that all three dense registration methods will
fail; 2) A very high correlation score also makes no sense
because registration algorithm cannot eliminate the gray scale
difference caused by image noise. That is to say, even if a
pair of fingerprints are perfectly registered, their correlation
coefficient cannot reach 1. Additionally, Fig. 8 shows that
the proposed method successfully improves registration perfor-
mances on distorted fingerprints and low quality fingerprints,
which validates the purpose of this study to improve regis-
tration performance on fingerprints with distortion and low
quality.

3) Registration Success and Failure: Some registration
examples on FVC2004 DB1_A by dense registration methods
are displayed in Fig. 9. Each row indicates a pair of input and
reference fingerprints, as well as their registration results. Four
dense registration methods are compared: 1) image correlation,
2) phase demodulation method, 3) DRN, and 4) our method.

Fig. 10. Bad registration examples by the proposed dense registration
method. Due to distortion and small overlapping region (row 1), bad quality
and distortion (row 2), and extremely low quality (row 3), minutiae-based
initial registration is far from correct, which is beyond the capability of dense
registration method.

Registration examples are displayed by overlapping reference
fingerprint and aligned input fingerprint in colors to be easily
understood. Green lines mark the well-registered areas, and red
lines refer to registration failure regions or non-overlapping
regions. Numbers inside the brackets are matching scores by
VeriFinger matcher [27] and image correlator. Higher scores
mean better registration performances, and the scores by image
correlator directly reflect the accuracy of dense registration.

Those genuine matching examples in Fig. 9 show that the
proposed method improves matching results with registration
challenges. The first row is a pair of distorted fingerprints,
the second row is an example of poor fingerprint quality, and
the third row meets difficulties in aligning neighboring ridges
in regions outside the fingerprint center because of lacking
minutiae and self-similarity of ridge structures. But our method
deals with those challenges well.

Meanwhile, as Fig. 10 shows, our method still generates
some bad registration results. These results mainly happen
in situations where multiple challenges coexist, like small
overlapping area, distortion, and low quality. Under these
circumstances, the extracted minutiae are of small number or
bad quality, and the minutiae-based initial registration result is
far away from correct spatial transformation, which is beyond
the range that dense registration method can handle. Previous
dense registration methods [6], [7], [18] are also not able to
solve this problem as they utilize the same minutiae-based
initial registration as our method.

C. Matching Accuracy

Matching experiments are conducted on FVC2004 DB1_A,
DB2_A, DB3_A, and NIST SD27 latent fingerprint data-
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Fig. 11. DET curves by image correlator and VeriFinger matcher with dense registration algorithms on FVC2004 DB1/2/3_A.

base to show how registration process improves matching
accuracy. Same as previous dense registration studies [6],

[7], [18], we use VeriFinger and image correlator to com-
pute matching scores. Although there are many fingerprint
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Fig. 12. FMR and FNMR curves versus threshold by image correlator scores
on FVC2004 DB1_A using image correlation (green), phase demodulation
(blue), DRN (purple), and the proposed method (red).

matching methods [1], we select VeriFinger and image cor-
relator because 1) they stand for minutiae-based matcher and
image-based matcher respectively, 2) we are interested in
relative increase in matching accuracy caused by registration
algorithm, rather than the absolute performance, 3) they are
easy to implement or access, and 4) using same match-
ers allows fair comparison with previous dense registration
methods.

Fig. 11 shows the Detection Error Tradeoff (DET) curves on
three FVC2004 subsets of dense registration methods: image
correlation [6], phase demodulation [7], DRN [18], and the
proposed method. Here DRN refers to DRN with single scale
in [18]. DRN with multiscale score fusion in [18] combines
matching scores from different smoothing scales, thus has
better matching performances. Since multiscale DRN outputs
multiple registration results, while the other algorithms output
a single registration, we report single scale DRN here for a
fair comparison of registration performance..

The subfigures (a)(c)(e) in Fig. 11 display the DET curves
by image correlator, and (b)(d)(f) display the DET curves
by VeriFinger matcher. It can be observed from these plots
that our method exceeds other dense registration methods on
matching performances.

To further study the matching performance in detail,
we draw the False Match Rate (FMR) and False Non-Match
Rate (FNMR) curves of image correlator scores of genuine and
impostor matching by dense registration methods as Fig. 12.
As we can see, the proposed method increases correlation
scores of genuine matching, which indicates a better reg-
istration performance. Additionally, the curves of impostor
matching by our method has the smallest intersection region
with genuine matching curves among all dense registration
methods, which is beneficial for matching performance.

To further evaluate the proposed method on very low
quality fingerprints, we performed matching experiments on
NIST SD27. NIST SD27 contains 258 pairs of latent and
mated rolled fingerprints, generating 258 × 258 pairs of
possible matching. The latent fingerprints are first enhanced
by FingerNet [11], then they are registered to rolled finger-
prints by different dense registration algorithms. We compare
our method with image correlation [6], phase demodulation
[7], and DRN [18]. The registered results are evaluated by

VeriFinger and image correlator matcher. Fig. 13 shows the
results of Cumulative Match Characteristic (CMC) curves.
Our method outperforms other methods according to both
matchers.

D. Mosaicking Accuracy

1) Minutiae Accuracy: A convenient way of quantifying
the performances of fingerprint mosaicking is to evaluate
minutiae extraction quality. The quality level of mosaicked
fingerprint can be judged by counting ‘fake’ and missing
minutiae, i.e. the wrong minutiae caused by discontinuity from
mosaicking. If the registration result is poor and misaligns
some minutiae or ridges, the mosaicking result would have
apparent discontinuity near the seam. Therefore, some fake
minutiae appear at the location of ridge disconnection or
displacement.

Fig. 14 (c) shows an example with fake minutiae in the
overlapping area of two fingerprints. Minutiae in red color
refer to the minutiae extracted from the left part fingerprint,
and minutiae in green color refer to the minutiae from the
right part fingerprint. Minutiae in blue color are extracted
from mosaicked fingerprint, and some fake minutiae exist at
seam location due to discontinuity. A fake minutia is defined
as existing only on mosaicked fingerprint and neither of two
fingerprints.

To examine the performance of the proposed fingerprint
mosaicking as well as registration, we conduct minutiae
extraction accuracy test on 2,800 genuine matching pairs
from FVC2004 DB1_A, and counts minutiae extraction errors
resulted from mosaicking discontinuity on each pair. For a pair
of genuine matching fingerprints, let I1, I2 and IM denote
the input fingerprint, reference fingerprint, and mosaicked
fingerprint, R1 and R2 are the overlapping region divided by
the mosaicking seam. The minutiae extraction error is defined
as:

e = |̃n1 − n1| + |̃n2 − n2| , (6)

where

• n1 = minutiae number in I1(R1);
• n2 = minutiae number in I2(R2);
• ñ1 = minutiae number in IM (R1);
• ñ2 = minutiae number in IM (R2).

Because the fingerprints are already registered, it is reason-
able to assume that all ‘real’ minutiae of two fingerprints are
aligned and matched. Therefore, directly counting minutiae
numbers is enough to judge minutiae errors. In addition,
we only conduct minutiae extraction on the region close to the
mosaicking seam for efficiency. Because minutiae extraction
error is resulted from bad mosaicking result, it only happens
near mosaicking seam.

The purpose of evaluating fingerprint mosaicking perfor-
mances in this study is to judge the performances of dense
registration algorithms. Therefore, we apply the proposed
fingerprint mosaicking method after dense registration algo-
rithms. We use the registration results of different dense
registration methods to conduct fingerprint mosaicking. Fig. 15
shows the cumulative curves of minutiae errors on FVC2004
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Fig. 13. CMC curves by image correlator and VeriFinger matcher with dense registration algorithms on NIST SD27.

TABLE III

FINGERPRINT DATABASES USED IN EXPERIMENTS

DB1_A caused by fingerprint mosaicking by image correlation
[6], phase demodulation [7], DRN [18], and the proposed
method. Clearly, mosaicking results for our dense registration
algorithm are better than previous methods, as more mosaicked
fingerprints have no minutiae errors.

2) Matching Accuracy: We further conduct matching exper-
iments to evaluate the contribution of mosaicking. 960 small
fingerprints of size 160 × 160 from 48 different fingers
were used in this experiment. This database is from a cell
phone company and is not publicly available. Each finger
has 20 impressions from different regions of finger. For

each finger, the first 10 fingerprints are used as the template
fingerprints, and each of the rest 10 fingerprints is used as
the input fingerprint. In the matching experiment without
mosaicking, the matching score is computed as the maxi-
mum of 10 matching scores between an input fingerprint
and 10 template fingerprints. In the matching experiment with
mosaicking, the matching score is computed between the input
fingerprint and a larger template fingerprint, which is obtained
by mosaicking the 10 template fingerprints. An example of
mosaicking 10 small fingerprints into a larger template finger-
print is shown in Fig. 16. In total, there are 48 ∗ 1 ∗ 10 = 480
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Fig. 14. Fake minutiae from mosaicking error. The minutiae in red color
are extracted from left part fingerprint before mosaicking, minutiae in green
color are extracted from right part fingerprint before mosaicking, and minutiae
in blue color are extracted after mosaicking. Several blue colored minutiae
appear on mosaicking seam none-overlapping with red or green minutiae, and
they are classified as ‘fake’ minutiae.

Fig. 15. Minutiae extraction errors on 2,800 genuine matching pairs on
FVC2004 DB1_A by dense registration algorithms.

genuine matching pairs and 48∗1∗10∗47 = 22, 560 impostor
matching pairs.

Fig. 17 shows the matching results by image correla-
tion score and VeriFinger score. The mosaicked fingerprints
have better matching performances than without mosaicking
according to both matchers.

E. Ablation Study

1) Data Augmentation: Fig. 18 shows the ablation study
result of different data augmentation methods. Since three data
augmentation approaches are mentioned in Section III-C, there
are eight combination strategies in total out of these three
methods. For efficiency, the training data to be augmented are
only from latent fingerprint database in Table I, and the trained
networks are evaluated on FVC2004 DB1_A. Meanwhile,
as different augmentation methods vary in magnifications,
the training data sizes of different augmentation methods are
set to have the same size 20,000 after augmentation. For
example, the magnification time of method “Swap+Rotate”
is 8, therefore 2,500 pairs of training data are randomly
selected for augmentation and training.

As shown in Fig. 18, all augmentation methods suc-
cess in improving matching accuracy comparing with no

TABLE IV

MATCHING ACCURACY OF DIFFERENT DATA AUGMENTATION
METHODS ON FVC2004 DB1_A

TABLE V

AVERAGE TIME COSTS (IN SECONDS) OF DIFFERENT DENSE
REGISTRATION ALGORITHMS FOR PROCESSING A PAIR OF

FINGERPRINTS IN FVC2004 DB1_A

augmentation, which testifies the effectiveness of data aug-
mentation methods. These augmentation methods vary a little
on matching performances, and generally the order of single
augmentation methods is Swap, Rotate, and Flip according
to matching performances in Fig. 18. The result by using
two augmentation methods is better than using one single
method, and using all three methods gets the best result. The
detailed error rates of different data augmentation methods are
displayed in Table IV.

2) Smoothness Loss: The effectiveness of smoothness loss
is studied and shown in Fig. 19. Three different values of
smoothness weight λ are compared, λ = 0 (i.e. no smoothness
constraint), and λ = 0.4, 0.8. Three networks with different λ
are trained and then evaluated to get registration and matching
performances. For efficiency, the networks are trained only
on latent fingerprint database in Table I, and evaluated on
FVC2004 DB1_A.

As shown in Fig. 19(a), adding smoothness constraint
successfully improves genuine matching scores and decreases
impostor matching scores. Therefore, it leads to an improve-
ment in matching performance as shown in Fig. 19(b).

F. Efficiency

Table V shows the average time cost to register a single pair
of fingerprints by different dense registration algorithms on
FVC2004 DB1_A. The first two methods, image correlation
[6] and phase demodulation [7], are implemented in C and
MATLAB, and tested on a CPU server equipped with Intel
Xeon E5-2640 2.5GHz CPU.

The average time cost of our method is 0.53s, including
0.38s for initial registration on CPU server which is the same
as in [6] and [7], 0.15s for the dense registration on a GPU
server with two Nvidia 1080Ti, and 2ms for nearest neighbor
interpolation also on GPU, which is almost negligible. The
dense registration part of our method is much faster than the
counterpart of the other two methods. Meanwhile, different
from previous dense registration methods that sample dis-
placement field and fit a TPS transformation in the final step,
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Fig. 16. Example of mosaicking small fingerprints.

Fig. 17. DET curves by image correlator and VeriFinger matcher on small fingerprint database with and without mosaicking.

Fig. 18. Studies of data augmentation. All the network models are trained only on latent fingerprint data for efficiency. (a) DET curve by image correlator
scores on FVC2004 DB1_A by different data augmentation methods. (b) Zoomed in partial image of (a).

our method directly interpolates to get a transformed image
according to displacement field, which is more efficient.

Our method is also faster than [18], which is also imple-
mented on GPU. Comparing with [18], our method is more
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Fig. 19. Studies of smoothness loss hyperparameter λ. All the network models are trained only on latent fingerprint data for efficiency. (a) FMR and FNMR
curves versus threshold by image correlator scores on FVC2004 DB1_A. (b) DET curve by image correlator scores on FVC2004 DB1_A.

complicated on network structure, but costs nearly half the
time. It is mainly because that [18] samples displacement field
and fits a TPS transformation on final step, but our method
directly interpolates to get a transformed image according to
displacement field.

VI. CONCLUSION

In this article, we propose an end-to-end network to regis-
ter fingerprints. Input fingerprints are first aligned by minu-
tiae matching, then they are sent into the network to get
a pixel-wise dense displacement field. Therefore, the input
fingerprints are finely registered by outputted displacement
field. We run registration and matching experiments on several
databases and prove our registration method outperforms state-
of-the-art dense registration method.

Comparing with previous dense registration methods of
fingerprints, our method has two main advantages:

1) By collecting and building training data from distorted
and latent fingerprints, our method reaches the best reg-
istration and matching performances on various types of
fingerprints.

2) By utilizing deep learning and training an end-to-end
network to directly output displacement field, our method
costs much less computation time than previous dense
registration methods.

We also develop a fingerprint mosaicking method after
registration by computing an optimal seam to stitch two fin-
gerprints. Experiments on mosaicking accuracy and matching
accuracy testify our mosaicking method’s performance, which
is also an evidence of superiority of the proposed registration
method over other dense registration methods.

Meanwhile, the bad registration examples in Fig. 10 sug-
gest that our method still needs improvement on registration
accuracy. The current algorithm is a fine registration process
which makes relatively small adjustment on initial registration
result. Therefore, it suffers from very poor initial registration
result.

Future work will explore a more powerful algorithm that
can handle long-range displacements and is able to correct

initial registration errors. The computation speed of the pro-
posed method also needs further improvement to be used in
large-scaled fingerprint identification system.
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